Comparative metabolic capabilities of CYP3A4, CYP3A5, and CYP3A7.
نویسندگان
چکیده
The human cytochromes P450 (P450) CYP3A contribute to the biotransformation of 50% of oxidatively metabolized drugs. The predominant hepatic form is CYP3A4, but recent evidence indicates that CYP3A5 contributes more significantly to the total liver CYP3A than was originally thought. CYP3A7 is the major fetal form and is rarely expressed in adults. To compare the metabolic capabilities of CYP3A forms for 10 substrates, incubations were performed using a consistent molar ratio (1:7:9) of recombinant CYP3A, P450 reductase, and cytochrome b5. A wide range of substrate concentrations was examined to determine the best fit to kinetic models for metabolite formation. In general, K(m) or S(50) values for the substrates were 3 to 4 times lower for CYP3A4 than for CYP3A5 or CYP3A7. For a more direct comparison of these P450 forms, clearance to the metabolites was determined as a linear relationship of rate of metabolite formation for the lowest substrate concentrations examined. The clearance for 1'-hydroxy midazolam formation at low substrate concentrations was similar for CYP3A4 and CYP3A5. For CYP3A5 versus CYP3A4, clearance values at low substrate concentrations were 2 to 20 times lower for the other biotransformations. The clearance values for CYP3A7-catalyzed metabolite formation at low substrate concentrations were substantially lower than for CYP3A4 or CYP3A5, except for clarithromycin, 4-OH triazolam, and N-desmethyl diltiazem (CYP3A5 - CYP3A7). The CYP3A forms demonstrated regioselective differences in some of the biotransformations. These results demonstrate an equal or reduced metabolic capability for CYP3A5 compared with CYP3A4 and a significantly lower capability for CYP3A7.
منابع مشابه
Mechanisms of CYP3A induction by glucocorticoids in human fetal liver cells.
Human fetal liver (HFL) cells express major drug metabolic enzymes CYP3A4, CYP3A5 and CYP3A7. In the fetal hepatocytes, betamethasone and dexamethasone (DEX) markedly enhanced the expression levels of CYP3A4 and CYP3A7 mRNAs and slightly increased the expression level of CYP3A5 mRNA. Interestingly, a high correlation between the CYP3A induction ability and the intensity of anti-inflammatory eff...
متن کاملExpression of CYP3A4, CYP3A5 and CYP3A7 in human duodenal tissue.
The essential role of cytochrome P450 3A4 (CYP3A4) in human small intestine is well established, and CYP3A5 seems also to be present in most subjects. However, the role of CYP3A7 in the small intestine remains poorly characterized. We have therefore studied the expression of these CYP3A enzymes in the duodenal tissue from 19 patients, using a specific RT-PCR (reverse transcriptase-polymerase ch...
متن کاملGenetic contribution to variable human CYP3A-mediated metabolism.
The human CYP3A subfamily plays a dominant role in the metabolic elimination of more drugs than any other biotransformation enzyme. CYP3A enzyme is localized in the liver and small intestine and thus contributes to first-pass and systemic metabolism. CYP3A expression varies as much as 40-fold in liver and small intestine donor tissues. CYP3A-dependent in vivo drug clearance appears to be unimod...
متن کاملDifferential enantioselectivity and product-dependent activation and inhibition in metabolism of verapamil by human CYP3As.
In vitro studies of enantioselective metabolism of R-(+)- and S-(-)verapamil (VER) were conducted using human cDNA-expressed CYP3A isoforms, CYP3A4, CYP3A5, and CYP3A7. N-dealkylated products nor-VER [2,8-bis-(3,4-dimethoxyphenyl)-2-isopropyl-6-azaoctanitrile] and D617 [2-(3,4-dimethoxyphenyl)-5-methylamino-2-isopropylvaleronitrile] were the major metabolites for all CYP3A isoforms regardless o...
متن کاملContribution of CYP3A isoforms to dealkylation of PDE5 inhibitors: a comparison between sildenafil N-demethylation and tadalafil demethylenation.
The aim of this study was to characterize the kinetics of metabolite formation of the phosphodiesterase type-5 (PDE5) inhibitors sildenafil and tadalafil by CYP3A4, CYP3A5, and CYP3A7 isoforms. The formations of N-desmethyl sildenafil and desmethylene tadalafil were examined using CYP3A supersomes co-expressing human P450 oxidoreductase and cytochrome b5. Both sildenafil N-demethylation and tad...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 30 8 شماره
صفحات -
تاریخ انتشار 2002